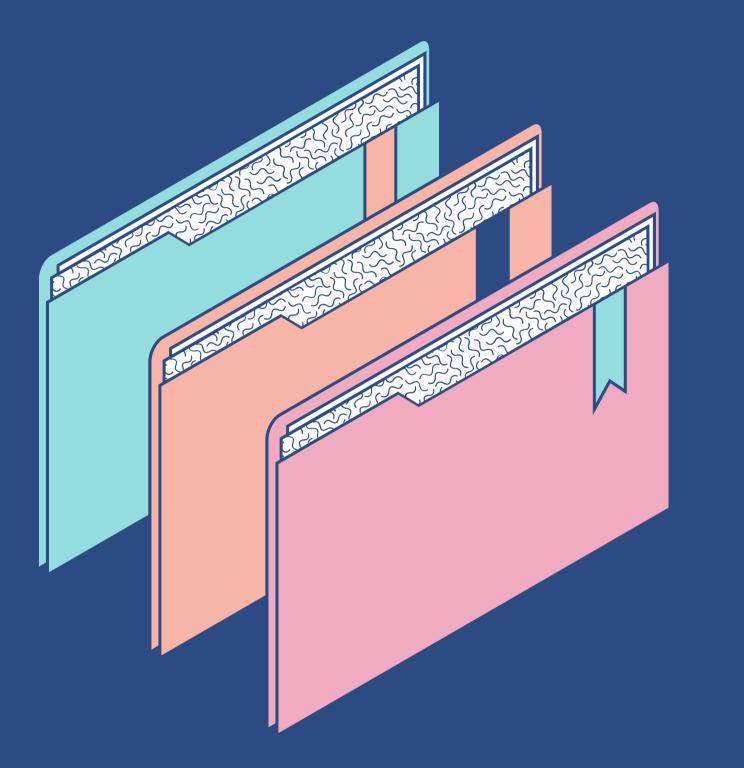


Tackling Talent Retention at

HR Analytics using Supervised and Unsupervised Machine Learning in R

Marcus Loke, Jisu Baek, Yuzhe Sun, Julia Ju



- **KEY TOPICS DISCUSSED** IN THIS PRESENTATION
- Research Questions
- Methodology + Results
- Discussion
- Recommendations + Limitations

Agenda

Problem Statement + Aim of Project

Problem Statement

WHY DO SO MANY TECH EMPLOYEES LEAVE?

In 2018, turnover in tech industry was the highest at 13.2%

As compared to other industries like Government/Education (11.2%) and Financial Services (10.8%) From 2012 to 2020, IBM had a reduction of 20% in its workforce

This does not bode well when talent retention is key to driving revenue growth

Employees leave for a myriad of reasons

Job fit, pay satisfaction, career development, etc.

Repercussions of Attrition

Slow the business and productivity losses

If a software developer leaves, it takes <u>43 days</u> on average to hire a new one (approx. <u>1.5 months</u> of productivity loss)

Loss of intellectual capital Creates **bottlenecks**

Revenue loss

Impact on workplace culture <u>Reduces morale</u> of the team

Costs around <u>US\$33K</u> for each employee that leaves

Aim of our project

REDUCE ATTRITION IN IBM BY:

- 1. Using ML to predict attrition
- 2. Uncovering key factors that lead to attrition
- 3. Characterizing "high-risk" employees for targeted retention strategies
- 4. Make recommendations that are amenable to experimentation

n strategies Ition

Research Questions

What are the key driving factors influencing attrition the most at IBM?

Having such insights would allow us to create watch-areas in IBM

2

Who is likely to leave IBM?

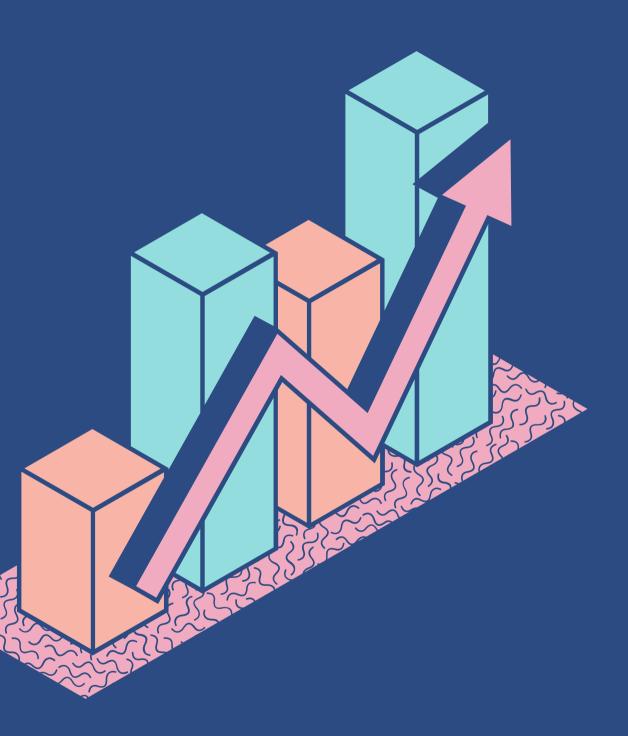
This prediction problem would allow us to identify talents who at at risk of leaving

3

What is the employee type that has the highest tendency to leave IBM?

Characterize and personify these "highrisk" individuals to allow better understanding

Methodology + Results



IBM Internal **HR** Data

- Contains employee information such as gender, monthly salary, department, attrition status, etc.
- 32 variables
- Outcome variable: Attrition
- We are able to perform prediction modeling using this dataset



Glassdoor Text Reviews

 Contains text reviews from past and present employees of IBM, their roles, etc.

8 variables

• How can we make use of the text

reviews to augment our prediction modeling?

Glassdoor Text IBM Internal HR Data Reviews

- The main idea is to use sentiment scores in the text reviews as a predictor in the model
- Compute sentiment scores for each role in the reviews
- Join both datasets based on roles
- We also performed clustering on the IBM dataset to see if it improves the model accuracy

So many different types of roles!

<pre>> unique(dat_gd\$Role)</pre>
[1] "19 Feb 2021 - Executive"
[2] "26 Aug 2014 - Advisory Engineer"
[3] "4 Jun 2020 - Bid Proposal Manager"
[4] "21 May 2021 - Applications Developer"
[5] "2 May 2021 - Technical Writer"
[6] "18 May 2021 - Project Manager"
[7] "26 May 2021 - Graphics Manager"
[8] "3 Mar 2021 - Content Director"
[9] "30 May 2021 - Software Developer"
[10] "30 May 2021 - CBD Consultant"
[11] "28 Apr 2021 - User Experience Designer"
[12] "30 May 2021 - Systems Engineer"
[13] "30 May 2021 - Administrative"
[14] "28 May 2021 - Software Development Manager"
[15] "24 May 2021 - VP-HR"
[16] "23 May 2021 - Computer Programmer"
[17] "18 May 2021 - User Experience Design Lead"
[18] "19 Apr 2021 - Partner"
[19] "30 May 2021 - Country Manager"
[20] "28 May 2021 - Data Center Technician III"
[21] "24 Feb 2021 - Client Technical Specialist"
[22] "5 Apr 2021 - CyberSecurity Engineer"

Before we conduct the sentiment analysis...

- We will categorize the roles into 6 different role categories:
 - AESP (Assistant Engineering & Scientific Personnel)
 - Corporate
 - Director
 - ESP (Engineering & Scientific Personnel)
 - Manager
 - Sales
- The goal is to have each role

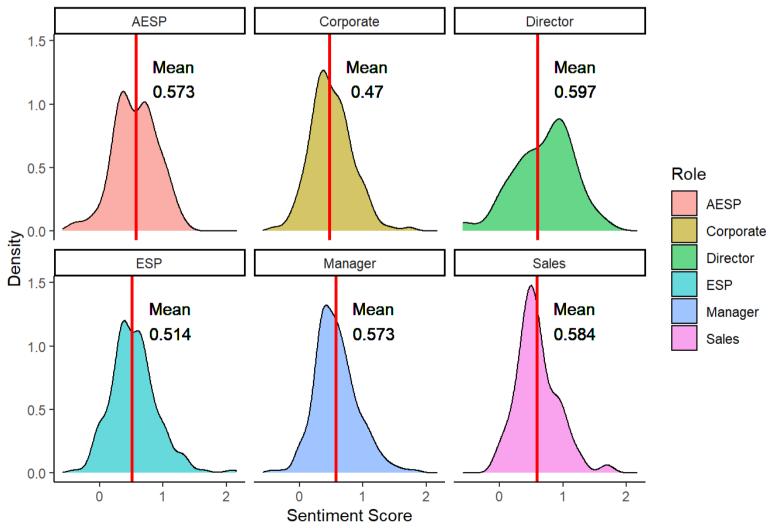
And many more...

• The goal is to have an aggregated sentiment score for

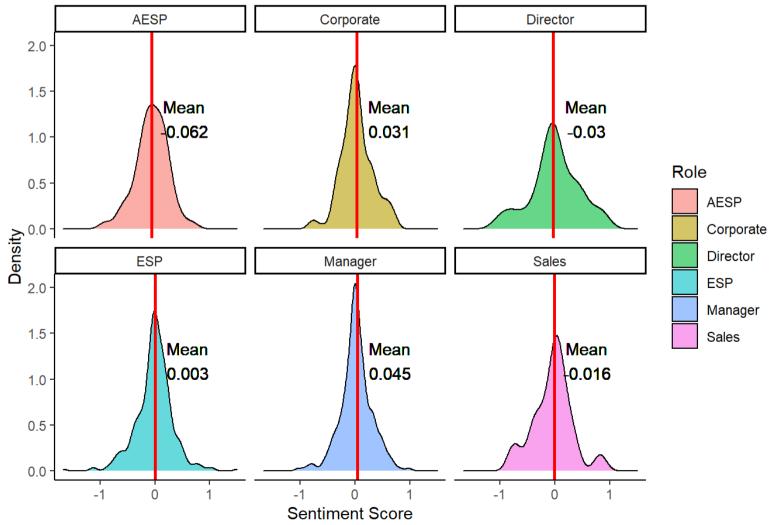
Sentiment Analysis

##	Role	word_count	sd	ave_sentiment
## 1:	AESP	871	0.3842475	0.5730397
## 2:	Corporate	2186	0.3597134	0.4696195
## 3:	Director	642	0.5245235	0.5968319
## 4:	ESP	6274	0.3822417	0.5135917
## 5:	Manager	3470	0.3515144	0.5727328
## 6:	Sales	740	0.3391197	0.5839903

Distribution of Sentiment Scores for Reviews in Pros



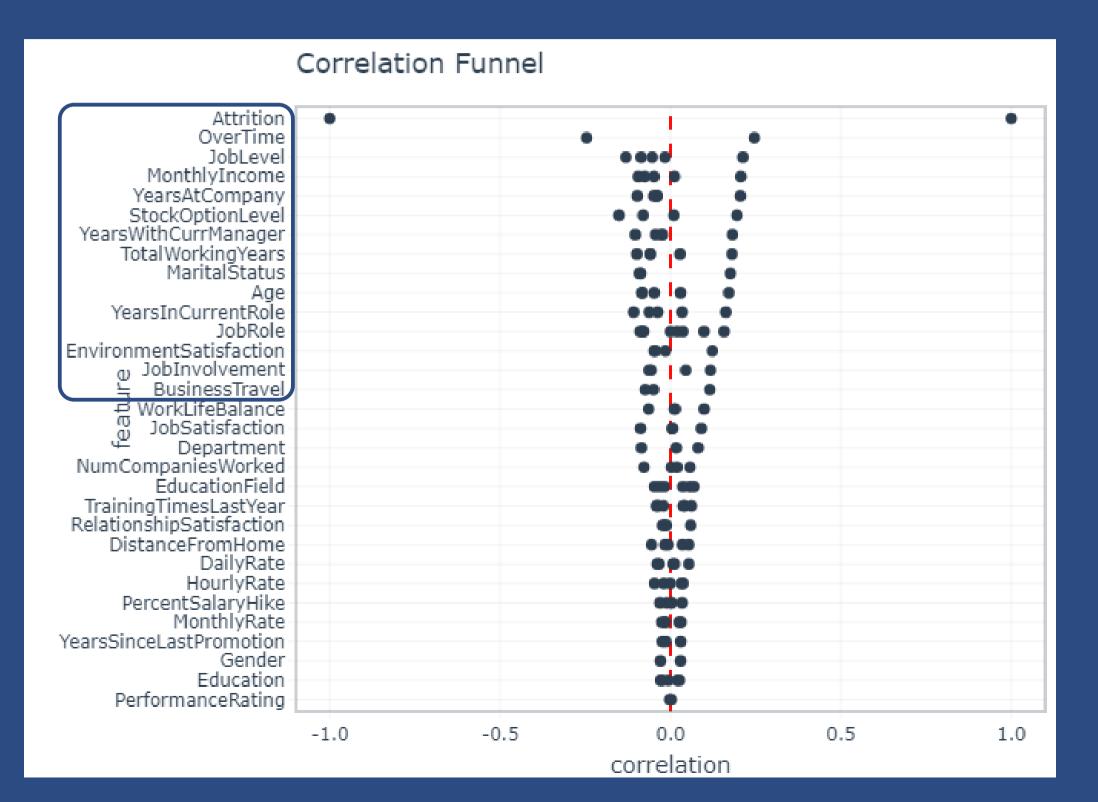
##	
##	1:
##	2:
##	3:
##	4:
##	5:
##	6:



Role	word_count	sd	<pre>ave_sentiment</pre>
AESP	960	0.3226684	-0.061601871
Corporate	2392	0.3291854	0.031341807
Director	664	0.3920271	-0.030371233
ESP	7116	0.3493464	0.002896978
Manager	4079	0.3316412	0.044559058
Sales	1310	0.3581594	-0.015564249

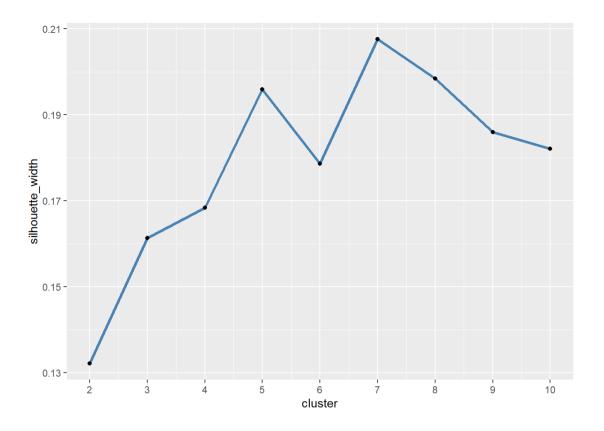
Distribution of Sentiment Scores for Reviews in Cons

Clustering on IBM Dataset



Methodology

- Cluster the dataset based on variables that are highly correlated with Attrition
- We decided to select variables that had >0.1 in correlation for the clustering analysis (ended up with 14 variables)
- We used the Gower Distance for the distance matrix as the variables had both continuous and ordinal data types



7-Cluster Solution

- Silhouette plot suggests a 7cluster solution
- The medoids show the "exemplary" employee for each cluster
- Employee in cluster 3 is risky

##		EmployeeNumber	Attrition	OverTime	JobLevel	l MonthlyIncome	YearsAtCompar	ny
##	463	621	No	No	2	2 5337	1	10
##	1381	1945	No	No	2	2 5561		5
##	710	991	Yes	Yes	1	l 2321		З
##	69	88	No	No	1	1 2194		3
##	1002	1411	No	No	1	1 3629		3
##	118	154	No	No	3	3 9738		9
##	700	976	No	No	4	4 17099		9
##		StockOptionLev	el YearsWit	thCurrMan	ager Tota	alWorkingYears	MaritalStatus	Age
##	463		0		7	10	Single	34
##	1381		1		4	6	Married	35
##	710		0		2	4	Single	31
##	69		1		2	5	Married	35
##	1002		0		2	8	Single	37
##	118		1		8	10	Married	36
##	700		1		8	26	Married	52
##		YearsInCurrent	Role		JobRole B	EnvironmentSati	sfaction	
##	463		7	Sales Ex	ecutive		4	
##	1381	Γ	3	Sales Ex	ecutive		2	
##	710		2 Re:	search Sc	ientist		3	
##	69		2 Re:	search Sc	ientist		2	
##	1002		2 Labora	atory Tec	hnician		1	
##	118		7	Sales Ex	ecutive		2	
##	700		8	1	Manager		4	
##		JobInvolvement	Busine	ssTravel	cluster			
##	463	4	Trave	l_Rarely	1			
##	1381	3	Trave	l_Rarely	2			
##	710	2	Nor	n-Travel	3			
##	69	3	Travel_Fre	equently	4			
##	1002	3	Trave	l_Rarely	5			
##	118	3	Travel_Fre	equently	6			
		3		l_Rarely	7			

Turnover Rate by Clusters

- Approximately <u>88%</u> of employees in cluster 3 left IBM
- That represents about <u>52%</u> of attrition in the entire IBM population

##	# A	tibble	e: 7 x 5			
##	cl	luster	Cluster_Turnover_Ra~	Turnover_Count	Cluster_Size	Population_Turnover_~
##		<int></int>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>
##	1	1	10.9	27	247	11.4
##	2	2	6.37	20	314	8.44
##	3	3	87.9	123	140	51.9
##	4	4	7.39	19	257	8.02
##	5	5	11.3	24	213	10.1
##	6	6	12.6	19	151	8.02
##	7	7	3.38	5	148	2.11

Prediction Modeling

STEP

Logistic **Regression with** Backward Selection

Baseline model with selected variables from IBM dataset

STEP

9

Logistic **Regression** with Sentiment Scores (Pros)

Compare with baseline model STEP

3

Logistic **Regression with** Sentiment Scores (Cons)

Compare with baseline model

STEP

Logistic **Regression** with Clustering

Compare with baseline model

5

STEP

Logistic **Regression with Both Sentiment** Scores & Clustering

Spoiler alert: this was the best model!

What is the metric for our model?

- FP: Predicting that an employee <u>would leave</u> but he/she <u>did not</u>
- FN: Predicting that an employee <u>would not leave</u> but he/she <u>did</u>

FN are more detrimental to the organization.

Sensitivity = TP/(TP + FN)

Specificity = TN/(TN + FP)

Accuracy = (TN + TP)/(TN + TP + FN + FP)

Model 5 resulted in the best model because it had the best sensitivity, accuracy and AUC.

##	mode	. description	auc	accuracy	specificity	sensitivity
## 1		. logmod with bw select	0.8940799	0.8204545	0.8102981	0.8732394
## 2	:	logmod with senti (pros)	0.8982404	0.8590909	0.8563686	0.8732394
## 3		logmod with senti (cons)	0.9003015	0.8613636	0.8590786	0.8732394
## 4		logmod with clust	0.8963319	0.8386364	0.8319783	0.8732394
## 5		ilogmod with senti & clust	0.9015611	0.8704545	0.8699187	0.8732394
## 6		trees with 10-fold cv	0.6325814	0.8500000	0.9674797	0.2394366

Sentiment scores and clustering were able to improve the prediction accuracy of the baseline model

Discussion

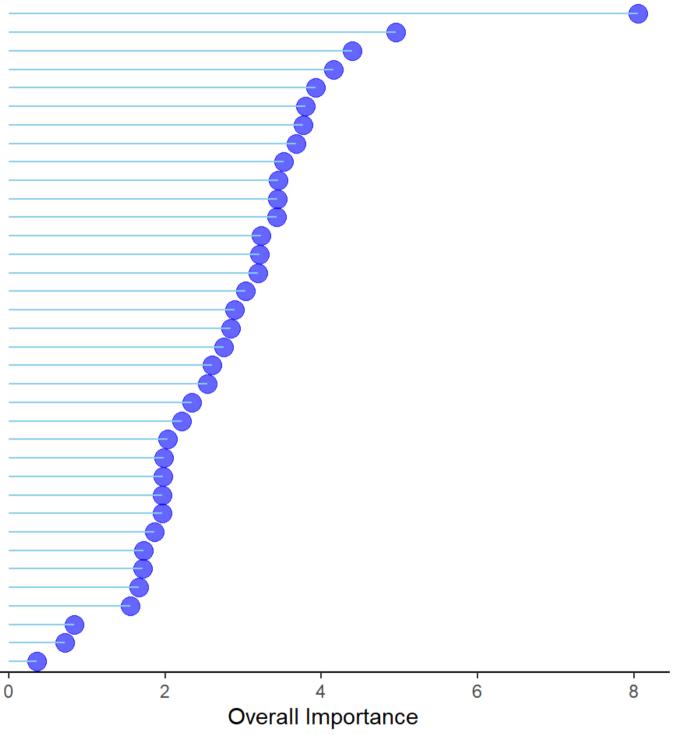
What are the key driving factors influencing attrition the most at IBM?

By analyzing the coefficients of the regression model:

- Working overtime would increase the likelihood of attrition by about 6 times
- Having stock options would reduce the likelihood of attrition by 0.3 times
- For each year that an employee is not promoted, there is a 1.2 times higher likelihood of leaving IBM

OverTimeYes StockOptionLevel1 YearsSinceLastPromotion JobSatisfaction4 RelationshipSatisfaction4 **NumCompaniesWorked** EnvironmentSatisfaction4 BusinessTravelTravel Frequently JobInvolvement4 JobInvolvement3 EnvironmentSatisfaction3 StockOptionLevel2 RelationshipSatisfaction3 EnvironmentSatisfaction2 WorkLifeBalance3 RelationshipSatisfaction2 Age DistanceFromHome YearsWithCurrManager JobInvolvement2 TrainingTimesLastYear JobSatisfaction3 GenderMale ave sentiment cons JobSatisfaction2 StockOptionLevel3 DepartmentResearch & Development MonthlyIncome BusinessTravelTravel Rarely WorkLifeBalance2 **TotalWorkingYears** WorkLifeBalance4 DailyRate cluster DepartmentSales PercentSalaryHike

Variable



Discussion

2 Who is likely to leave IBM?

We have created a prediction model that is able to achieve the following on the test set:

- Sensitivity = 87.3%
- Accuracy = 90.2%



0.8732394

Discussion

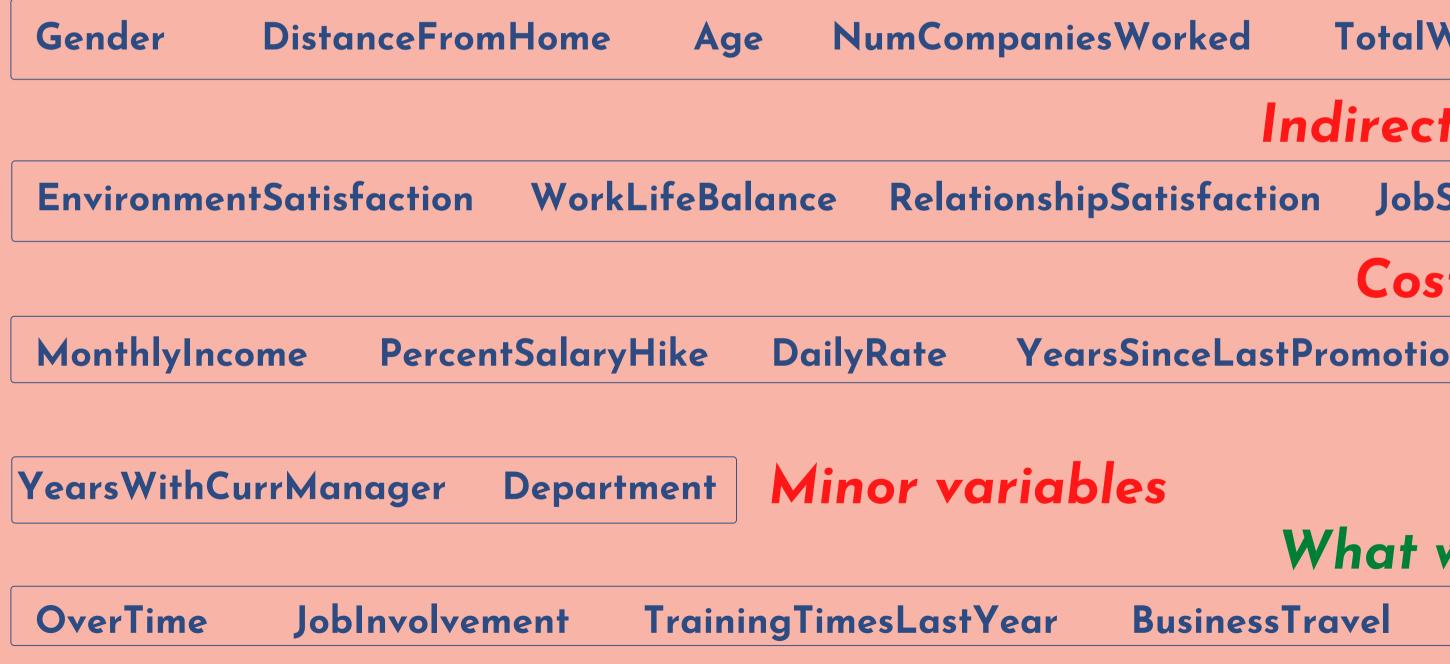
What is the employee **3** type that has the highest tendency to leave IBM?

- Employees that have the highest risk of leaving are in cluster 3
- Their personas are shown in the table
- We will propose some recommendations to improve the retention rate of this type of employees

##	EmployeeNumber	Attrition	OverTime	JobLevel	MonthlyIncome	YearsAtCompar	ıy
## 463	621	No	No	2	5337	1	10
## 1381	1945	No	No	2	5561		5
## 710	991	Yes	Yes	1	2321		3
## 69	88	No	No	1	2194		3
## 1002	2 1411	No	No	1	3629		3
## 118	154	No	No	3	9738		9
## 700	976	No	No	4	17099		9
##	StockOptionLev	el YearsWit	thCurrMana	ager Total	lWorkingYears /	MaritalStatus	Age
## 463		0		7	10	Single	34
## 1381		1		4	6	Married	35
## 710		0		2	4	Single	31
## 69		1		2	5	Married	35
## 1002	2	0		2	8	Single	37
## 118		1	8		10	Married	36
## 700		1		8	26	Married	52
##	YearsInCurrent	Role	5	JobRole Er	nvironmentSati	sfaction	
## 463		7	Sales Exe	ecutive		4	
## 1381		3	Sales Exe	ecutive		2	
## 710		2 Res	search Sci	lentist		3	
## 69		2 Re:	search Sci	lentist		2	
## 1002	2	2 Labora	atory Tech	nnician		1	
## 118		7	Sales Exe	ecutive		2	
		_		lanager		4	
## 700		8	r	iunu ₈ ei			
## 700 ##	JobInvolvement		ssTravel o	-			
	JobInvolvement 4	Busines		-			
##	4	Busine: Travel	ssTravel o	luster	J		
## ## 463	4	Busines Travel Travel	ssTravel d l_Rarely	luster: 1			
## ## 463 ## 1381	4 3 2	Busines Travel Travel	ssTravel o l_Rarely l_Rarely n-Travel	luster 1 2]		
## ## 463 ## 1381 ## 710	4 3 2 3	Busines Trave Trave Nor Travel_Fre	ssTravel o l_Rarely l_Rarely n-Travel	:luster 1 2 3]		
## ## 463 ## 1381 ## 710 ## 69	4 3 2 3 2 3	Busines Trave Trave Nor Travel_Fre	ssTravel o l_Rarely l_Rarely n-Travel equently l_Rarely	:luster 1 2 3 4			

Recommendations

VARIABLES FROM MODEL #5 (BEST MODEL)



Unable to control **TotalWorkingYears** Indirect variables **JobSatisfaction** Costly **YearsSinceLastPromotion**

What we can control

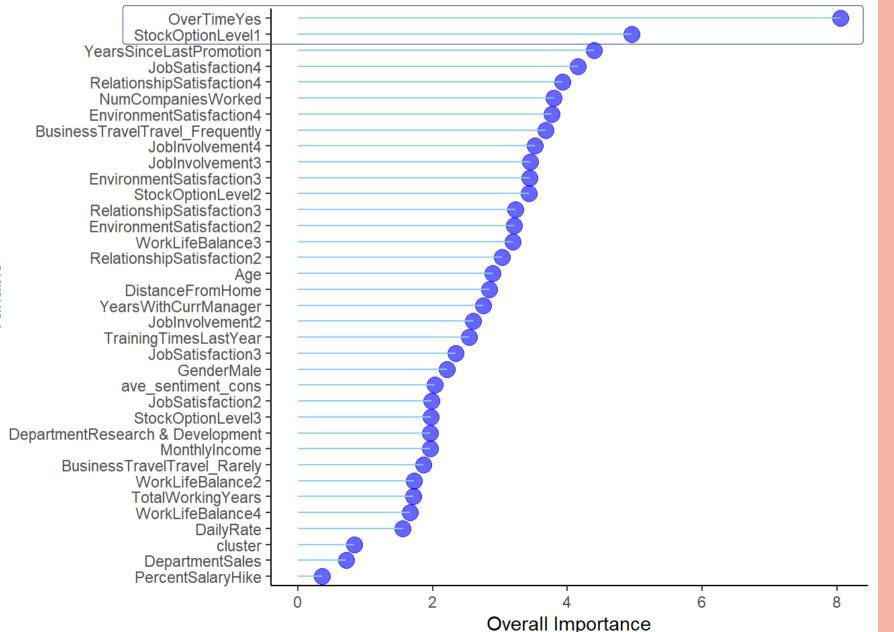
StockOptionLevel

Recommendations

VARIABLES FROM MODEL #5 (BEST MODEL)

JobInvolvement

TrainingTimesLastYear



Overtime

A rescission of overtime culture can have the potential to reduce the likelihood of attrition by **<u>6 times</u>** (while holding other variables constant)

Stock Options

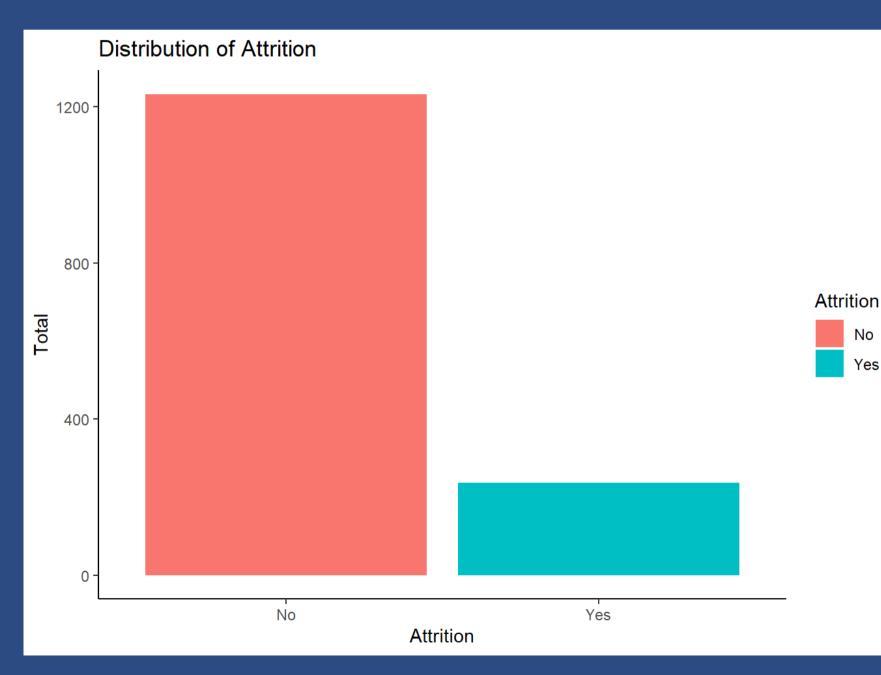
Giving stock options to employees can have the potential to reduce the likelihood of attrition by 69% (while holding other variables constant)

What we can control

BusinessTravel StockOptionLevel

Limitations

IMBALANCE IN ATTRITION STATUSES



Future works to treat imbalance

left IBM

No

Yes

More stayed than left

Such an imbalance in our train set would result in poorer prediction accuracy in our models

• Try to collect more observations on employees who

• Explore upsampling techniques

Do you have any questions?

Send it to us!

Thank you for listening!

